
4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Our first key design decision that we made for our project was to implement auto graded questions. This
enables instant feedback for students while saving professors and TAs time on grading. This decision is
crucial as it supports one of our goals of providing students with immediate feedback about their
assignments, while also allowing professors and TAs to focus more on teaching rather than grading. Another
key design decision was to incorporate randomized questions by using randomized parameters within
questions, making each attempt unique for students. This is essential, as it ensures students have unlimited
practice opportunities with varying question parameters, allowing them to gain a further understanding of
core concepts. Finally, our last key design decision was using Prairielearn as the project’s main platform, as it
allows for us to use question randomization and autograding. Choosing Prairielearn for our project allows
us to utilize its fully modular capabilities to create questions that are randomly generated with randomized
parameters that can be automatically graded by Prairielearn, unlike other alternatives like Canvas.

4.2.2 Ideation

Options to autograde questions:

- Option 1: manual grading by professor or TAs
- Option 2: not asking code questions that can’t be autograded
- Option 3: write own compiler + unit tests to run in PL
- Option 4: all multiple choice
- Option 5: use PrairieLearn’s built-in C and Python autograder
- Option 6: create our own custom autograder container in addition to PrairieLearn’s version
- Option 7: make harder autogradable questions, like programming ones, graded based on

participation
- Ex: if you submit code, no matter if it's right or wrong, you will get participation points for

that question

The decision we had the most choices with was the goal of having almost all questions able to be
autograded. Although an achievable goal, we had to determine if it was worth the risks and costs, and if so,
how it should be implemented. The obvious alternative is to allow manual grading, and forego our goal. Or,
we could remove all questions that cannot be simply autograded- mainly paragraph response and
student-written code questions. We also considered adapting them by taking the core concepts of these
questions and turning them into multiple choice, or other format, questions.

Autograding the C and ARM coding questions is the most complex part to implement. Some choices for
achieving this included using PrairieLearn’s built-in autograders for C and Python, or using these versions in
addition to adding a custom autograder container. If given more time and materials, we could even have
decided to build our own compiler and unit testing solution from the ground up to run in PrairieLearn.
Finally, we could have utilized a “challenge question” approach, where more difficult programming
questions are asked, but students receive participation points as long as they tried in good faith.

4.2.3 Decision-Making and Trade-Off

 To identify the pros and cons of which options to use based on our list of brainstormed options, we had to
think about our ultimate goal with our design and user needs. We want to have questions that are
autogradable so professors and TAs don’t have to worry much about manually grading assignments, but we
also want to develop complex questions that are unique and engaging for students.

Pros Cons Trade-offs

Option 1 ● Professors and TAs
have more say in
how a question gets
graded

● Don’t have to worry
about making tests
and making
questions
autogradable

● Doesn’t need our
professor’s and
TA’s need of
questions being
autogradable

● Students won’t get
instant feedback
when answering a
question

● Answers can be
mistaken and
points can be
wrongfully
deducted

By picking this option over
the rest, we are giving up:

● saving time for
professors and TAs

● Instant feedback
for students

● Incorrect grading
by human error

for:
● More say in how a

problem gets
graded

● The convenience
of not having the
extra step to
autograde
questions

Option 2 ● Saves time in
developing new
strategies for
autograding
difficult coding
questions

● Don’t have to worry
about creating
custom autograder
containers for
questions that
PrairieLearn can’t
handle

● Can only ask
coding questions
in a certain
format, which can
hinder uniqueness

By picking this option over
the rest, we are giving up:

● Uniqueness of
problems

for:
● Not having many

autograder
problems

Option 3 ● We know the whole
process from
submitting an
answer to how it
gets autograded

● We can customize
how questions get
autograded

● Will take a lot of
time to get
working properly

By picking this option over
the rest, we are giving up:

● Time that we
could use to
develop and
improve problems

for:
● Making our own

method to
autograde
questions

Option 4 ● Easy to autograde
● Will have almost

no autograder
issues or debugging

● Questions will
only be in a
multiple-choice
format

● Hinders the
engagement of

By picking this option over
the rest, we are giving up:

● Problems that our
engaging for
students and
encourage learning

questions for:
● No difficulties

with making
problems
autogradable

Option 5 ● This is great at
autograding C code
submitted by
students

● Also works for
calculation based
questions

● Does not support
ARM assembly
language input

● Does not simulate
the actual
hardware that
students use in lab

By picking this option over
the rest, we are giving up:

● ARM assembly
question
autograding

● Simulations of real
2880 hardware

for:
● Ease of

implementation

Option 6 ● More types of
questions can be
autograded, such as
ARM assembly
questions

● We’ll know how to
use the custom
autograder

● It will take some
time to create a
functioning
autograder
container

By picking this option over
the rest, we are giving up:

● Time that could be
used for problem
development or
improvement

for:
● More variety in

questions that can
also be autograded

Option 7 ● Easier question
design since you do
not need to write
code to grade the
question

● All students will get
points if they
attempt the
question, regardless
of correctness

● This will not
provide feedback
to students to let
them know if their
solution is correct

● Students may
submit low-effort
and
non-functioning
solutions.

By picking this option over
the rest, we are giving up:

● Instant feedback
to students.

for:
● Easier question

design and
participation
grading.

4.3 PROPOSED DESIGN

4.3.1 Overview

Our current design is a server with PrairieLearn running as a Docker container. Users access the server
through their web browser with the server URL. Inside PrairieLearn, we have a list of homework
assignments and their respective questions. A question is composed of a JSON file with basic information
about the question, an HTML file that structures the visual component of the question, and a Python script
that supports the internals. Questions can get autograded through either the Python script or an autograder
image that checks programs written in C or ARM assembly. TAs can view student responses and provide
feedback if answers are not autograded.

4.3.2 Detailed Design and Visual(s)

Figure: Block diagram of PrairieLearn components

The server hosting our PrairieLearn application is an Ubuntu 22.04 Linux machine. It has port 22 open for
SSH which allows us to access the server for maintenance. Ports 80 and 443 are also open for HTTP/HTTPS
traffic to allow users to access the site through the URL. User traffic is redirected with NGINX to port 3000,
the PrairieLearn application port. PrairieLearn is hosted in a Docker container, which functions like a virtual
machine. The ARM assembly and C autograders are separate containers connected to the PrairieLearn
container through a socket and input/output directories.

PraireLearn is structured with courses with instances. An example of how those are used is “CPRE 2880” as
the course listing and “Fall 2024” as the instance. Inside each instance are homework sets with individual
questions. Each question has a “info.json” file that includes a unique ID, a title, a category, additional tags,
and autograding options. Questions also have an HTML that allows the designer to create the visual
components of the question, like diagrams, prompts, and entry boxes. There is also a “server.py” that
randomizes question parameters and grades the question if it is not programming based. If it is
programming based, there is a separate folder called “tests” that has a correct program and scripts to
initialize the autograder.

There are three types of users for PrairieLearn: students, TAs, and professors. Students can view their
assignments and submit answers. TAs can view those answers and provide feedback if necessary. Professors
can design and modify the questions/course. Users login with their Iowa State credentials through
Microsoft Authentication.

Eventually, PrairieLearn will be integrated into Canvas so that grades are automatically synced and the
PrairieLearn application window is embedded into the Canvas site.

4.3.3 Functionality

Our design would ideally become a quiet staple in CPRE classes. Professors with little technical skill would
be able to set up a virtual machine to host a PrairieLearn instance just by following our documentation.
Professors, TAs, or senior design groups could then implement course specific questions. Both professors
and students will be able to log in with an account connected to their university account, making access
restriction easy. Professors can then release a course for their students to access, customize which questions
will be graded, and publish assignments.

Figure: Journey Map describing student use of PrairieLearn

PrairieLearn should be an effective platform for students to complete homework assignments and practice
concepts. Questions will be more than just short answers or multiple choice- we will implement questions
that are more interesting and require more effort so students must think through each question, even if they
have seen a variant of the problem before. We aim for our solution to become a standard for a flexible
engineering homework platform that teaches students well. Our design should have minimal bugs and
cause minimal frustration as students work through problems. From there, the course will interface with
Canvas to automatically update student grades. Overall, the effect will be reduced stress on professors and
students, reduced time spent grading, and improved student test scores.

4.3.4 Areas of Concern and Development

At the moment, our design is functioning and nearing a version ready for Beta testing, however, it does have
some noted faults. One is that all homework questions are not implemented or are implemented
improperly. There are also more manual graded questions than preferred, since manually graded questions
create more work for TAs that we wish to avoid. Additionally, many questions are simple and need to be
more engaging for users.

Our concerns in addressing the above faults come from several factors. We have a time restraint because our
client requests a Beta version to use in the upcoming semester, and we also only have so much time to
contribute to the project as college students. We also have not tested our application with actual students,
so it is hard to find what all will need changed or improved. There is also a limit of already implemented
question elements in PrairieLearn, so creating unique questions requires significantly more effort from the
designer.

The plan for this project is to have a Beta version ready for Spring 2025 that allows students that semester to
take a first look at our application and provide us feedback for improvements. We will also create further
documentation to support future PrairieLearn developers that work on this course or another. We will also
create new PrairieLearn question design elements that allow for robust and engaging questions.

4.4 TECHNOLOGY CONSIDERATIONS

The technologies used in our design include Prairielearn, QEMU ARM emulator, and Git. Our first
technology, Prairielearn, integrates well with our project as our goal is to create a dynamic, customized,
interactive learning environment. Through use of its completely customizable questions, we can provide
auto grading and question randomization, which will help students learn through practice. However,
Prairielearn does require a certain degree of technical skill to program a course in Prairielearn. In order to
create questions in Prairielearn, there’s no simple interface you can use, you have to hard code it from
scratch, which could dissuade potential users. Another option we could’ve used is the technology that was
originally used, Canvas. Professors are already familiar with it, and it’s easy to create homework
assignments. However, the autograding abilities of Canvas are mediocre and the question customization is
almost non-existent, meaning Prairielearn is better for our project.

Our next technology was the QEMU ARM emulator, which enables hardware emulation of a TM4
microcontroller. This technology allows for students to interact with embedded systems without needing a
physical device such as the lab robots. Some drawbacks of this is the difficult setup of the emulator and the
maintenance required to ensure compatibility with Prairielearn. An alternative to using the QEMU ARM
emulator would be to use the Cybot emulator which was made for CPRE 2880. Since it was specially made
for this course, it has all the features that the QEMU ARM emulator has. However, it has less documentation
than QEMU while also having issues syncing to Prairielearn, meaning that the QEMU ARM emulator was
the better option for us. However we haven’t given up on using the Cybot emulator, and we have hopes to
use it in the future for other aspects of our project.

The final technology we used was Git. Prairielearn has the ability to pull courses from Git repos, meaning
any code we’ve worked on for our project can be pulled by the server whenever a new update is pushed. It
also helps us with tracking code changes and managing our project as a whole. The only downside of Git is
that it could be challenging for professors unfamiliar with Git. An alternative to using Git would be to just
host the course files on the Prairielearn server, but this makes it harder to make changes to the course, as
you will have to manually upload the files. For these reasons we choose to use Git to host our course files.

4.5 DESIGN ANALYSIS

With the current progress of our design, we almost have a polished beta version of our application ready for
CPRE 2880 students to use and experiment with. Almost all homeworks have been implemented into our
design, where each problem aligns with existing homeworks and is autogradable. There are still two
homework assignments that need work done to their questions, such as making some questions
autogradable or adding images to the questions. Our proposed design does work and it has delivered us a
platform that will increase engagement and learning for students, as well as make it easier for questions to
be graded without any manual intervention. The only problem that we have with our design is that there is
a random bug that occurs when autograding assembly-based programming questions. However, it is totally
feasible to get our design functioning correctly for the CPRE 2880 courses and other courses as well.

The future plans for our design is to polish up the remaining bit of our design before the end of the Fall
2024 semester. This involves finishing the two homeworks mentioned in the previous paragraph. This will
allow our design to be in a beta version that we can have CPRE 2880 students experiment with in the Spring
2025 semester, and give us meaningful feedback to improve our design. We also want to add more question
types into our design, mostly ones that utilize the emulation tools. This will provide students with problems
that cover different topics in the course.

